
KLOCs Matter
https://devSteve.com/blog/posts/klocs-matter.html


September 02, 2025


Assertion

Despite popular opinion, KLOCs (or "thousands of lines of code") are the best metric for 
measuring developer productivity.

Definitions

My assertion applies to "software developers" or "people who are paid to write code". My 
assertion does not apply to "technical leads", "data scientists", "software architects", "project 
managers", "qa engineers", or any other software-adjacent job title.

If you're still uneasy with the "paid to write code" definition, then how about "a person who's 
role entails >=50% time allocation to writing code for a product or service within a company/
organization"? This is what I mean by "software developer", and to whom my KLOC assertion 
applies.

Another point to make clear is that "most productive" is a relative term. Different teams can have 
different constraints that can affect developer productivity. We grade on a curve, and by "most 
productive", I mean the developers on a team who ship more code than other developers on the 
same team.

Lastly, by "shipping code" I mean deploying code to production. If you want to give partial 
credit for merging code to dev or QA, be my guest, but full credit only goes to the code that 
makes it to production. Also, lines-of-code removed count at least as much as lines-of-code 
added. There's no need to flood the comment section with remarks about how "removing unused 
code is just as valuable as adding new code". I'm referring to the total lines-of-code delta, not 
specifically lines-of-code added.

Observations

The most productive developers always seem to ship the most code (relative to the other 
members of their teams). This has been true for 100% of my 20+ year career. There has never 
been an exception.

"But aren't the best software developers the ones who can solve the hardest problems?" Yes, and 
being able to solve more problems allows one to ship more code. The code you don't know how 
to write doesn't get shipped.

https://devSteve.com/blog/posts/klocs-matter.html


"But don't the best software developers use DRY (Don't-Repeat-Yourself) patterns and elegant 
solutions that require fewer lines of code than their sub-optimal counterparts?" Yes, more 
experienced developers tend to write more succinct code, but because they solve problems more 
efficiently, they tend to have more bandwidth to solve a larger number of problems.

Taking a step back, a software project usually breaks down into three phases:

1. Make it work.
2. Make it work correctly.
3. Make it fast and efficient.

Developers don't understand a problem until they've had time to form a mental model in their 
heads. The mental model will evolve over time as their understanding of the problem improves.

This lack of full understanding at the onset of a software project is what leads to the 
aforementioned three-phase approach to software development. In phase one you just want get 
something (anything) to work. The first working version or "MVP" is rarely completely 
optimized. Besides, premature optimization is the root of all evil, as the old saying goes.

Getting to the first working version will require code to be written that may or may not be 
completely DRY with perfect abstractions and no extraneous code. If the code is completely 
optimal in its first commit, congratulations, but lines of code were still committed so my 
assertion that "the person who ships the most code is the most productive developer on the team" 
still holds true.

Just because Developer A might write more lines of code to solve Problem X than Developer B, 
that doesn't mean that Developer A's overall lines-of-code shipped will exceed Developer B's. 
Based on real-world experience, quite the contrary has been true. Developer B is more likely to 
ship more code than Developer A because competent experienced developers often ship more 
code, and thus are more productive, than inexperienced junior developers.

Exception

There's a clear exception to the line "competent experienced developers often ship more code, 
and thus are more productive, than inexperienced junior developers" from the previous section, 
and that is that some people are just plain lazy.

There are people in this world who work their hardest to do the bare minimum - as ironic as that 
sounds. I've seen it first hand. A developer will seem completely aloof until someone tries to get 
them to work on a hard problem, then it's game-on baby! They'll come up with all sorts of 
reasons why someone else should be assigned the work with a level of tenacity and vigor rarely 
exhibited.



AI Agents

There's another caveat to the line "competent experienced developers often ship more code, and 
thus are more productive, than inexperienced junior developers", and that caveat is AI code 
generation.

With AI tools like Claude Code, even someone with little-to-no prior software development 
experience can generate working code. In order for the code to count as "productive" by our 
definition, it still needs to be merged and shipped to production.

"Throw away" code that never gets merged does not count toward the lines-of-code metric, 
though it could be argued that any learnings or knowledge gleaned from the throw-away 
experiments should still count for something.

For the AI-generated code that does get merged and shipped, then those lines of code count just 
like any others. There is no distinction between human-generated code and AI-generated code 
with respect to my assertion. Shipped lines-of-code are shipped lines-of-code.

Alternatives

The most commonly used alternative methods of measuring developer productivity I've seen are:

• Number of tickets closed.
• Number of story points completed.
• Number of LLM tokens used.

The LLM token usage approach is obviously fairly new, and in my opinion pales in comparison 
to measuring lines of code shipped (rather than lines of code generated by an LLM - which may 
or may not get merged and shipped).

"Tickets closed" is another interesting method because it rewards the procedural over the 
empathetic. When someone reaches out for help with an urgent issue, responding with a cold 
"have you filed a ticket yet?" clearly establishes the business-nature of the interaction, and 
downplays the more human side of helping someone.

In a setting that measures productivity on the number of tickets closed, the procedural employee 
will appear more productive, even if an empathetic employee solves more problems but didn't 
file a ticket for each problem solved.

The "story points completed" metric has never seemed quite right because there's always 
someone on the team that either pads/over-values their story points (ex: puts 8 points where 
others might put 4 or even 2), or over-itemizes their tasks so instead of one 4 point story they end 
up with four 2 point stories. The people who use this approach rarely seem to ship the most code.



The people who advocate for these alternative productivity metrics often argue that lines-of-code 
isn't a valid metric either because developers can simply game the system by writing more 
verbose code thus producing more lines of code. This argument seems weak for two reasons:

1. Code reviews are a thing. If someone was gaming the system it would be immediately 
obvious to the rest of the team.

2. Tools/scripts can be written to remove comments and whitespace to give a more 
consistent view of the code being committed.

Conclusion

Admittedly, I've never worked with another software developer who has agreed that KLOCs are 
the best metric for measuring developer productivity. Almost all of them have used the argument 
that "better developers solve problems in fewer lines of code, and therefore the lines-of-code 
metric should not be used".

What's interesting is that all developers seem to make this argument - even the ones who actually 
ship the most code! Perhaps it's because they don't want to reduce their perceived worth down to 
some trivial-sounding metric like lines-of-code.

There are obviously other things that go into being a highly productive software developer. 
Being able to help brainstorm ideas, design new features, fix bugs, improve performance, 
maintain code-quality, etc. are all valuable contributions, but these are ancillary job functions. 
The primary job function of a software developer is to ship software. In the words of Linus 
Torvalds: "Talk is cheap, show me the code."


